39 research outputs found

    Smart Procurement Of Naturally Generated Energy (SPONGE) for PHEV's

    Get PDF
    In this paper we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of PHEV's to absorb oncoming energy in an smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO is used to show simple simulations to support the efficacy of the proposed idea.Comment: Updated typos with respect to previous versio

    Smart procurement of naturally generated energy (SPONGE) for PHEVs

    Get PDF
    In this paper, we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of plug-in hybrid electric vehicle (PHEVs) to absorb oncoming energy in a smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO (Simulation of Urban MObility) is used to demonstrate the efficacy of the proposed idea

    Cooperative control and smart procurement of naturally generated energy (SPONGE) for PHEVs

    Get PDF
    Electric vehicles can potentially be the best means of transportation for improving air quality, provided that they are powered by electricity from natural gas or wind, water or solar power. In this paper we describe a simple cooperative algorithm that exploits the energy management units of Plug-in Hybrid Electric Vehicles (PHEVs) to absorb the expected forthcoming energy available from renewable sources. The proposed approach bridges the gap between mobility patterns and power grid constraints, and allows to prevent green energy from being wasted while at the same time reducing the complexity burden of the power grid to charge unexpected loads of electric vehicles. Simulation results are given to show the efficacy of the proposed method

    Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits

    Get PDF
    Dendrites of pyramidal cells exhibit complex morphologies and contain a variety of ionic conductances, which generate non-trivial integrative properties. Basal and proximal apical dendrites have been shown to function as independent computational subunits within a two-layer feedforward processing scheme. The outputs of the subunits are linearly summed and passed through a final non-linearity. It is an open question whether this mathematical abstraction can be applied to apical tuft dendrites as well. Using a detailed compartmental model of CA1 pyramidal neurons and a novel theoretical framework based on iso-response methods, we first show that somatic sub-threshold responses to brief synaptic inputs cannot be described by a two-layer feedforward model. Then, we relax the core assumption of subunit independence and introduce non-linear feedback from the output layer to the subunit inputs. We find that additive feedback alone explains the somatic responses to synaptic inputs to most of the branches in the apical tuft. Individual dendritic branches bidirectionally modulate the thresholds of their input-output curves without significantly changing the gains. In contrast to these findings for precisely timed inputs, we show that neuronal computations based on firing rates can be accurately described by purely feedforward two-layer models. Our findings support the view that dendrites of pyramidal neurons possess non-linear analog processing capabilities that critically depend on the location of synaptic inputs. The iso-response framework proposed in this computational study is highly efficient and could be directly applied to biological neurons

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore